The question of whether artificial intelligence (AI) can surpass human capabilities is crucial in the application of AI in clinical medicine. To explore this, an interpretable deep learning (DL) model was developed to assess myopia status using retinal refraction maps obtained with a novel peripheral refractor. The DL model demonstrated promising performance, achieving an AUC of 0.9074 (95% CI 0.83–0.97), an accuracy of 0.8140 (95% CI 0.70–0.93), a sensitivity of 0.7500 (95% CI 0.51–0.90), and a specificity of 0.8519 (95% CI 0.68–0.94). Grad-CAM analysis provided interpretable visualization of the attention of DL model and revealed that the DL model utilized information from the central retina, similar to human readers. Additionally, the model considered information from vertical regions across the central retina, which human readers had overlooked. This finding suggests that AI can indeed surpass human capabilities, bolstering our confidence in the use of AI in clinical practice, especially in new scenarios where prior human knowledge is limited.
There’s no “AI” involved. The authors quickly retreat from their misleading title to the sightly less misleading “deep learning”. Regardless of grifter terminology, we’re actually talking about a machine computing the statistics of images. That might be good for patients. But it’s got nothing to do with “artificial intelligence” or “seeing beyond humans”.