

So someone else suggested to reduce the learning rate. I tried that and at least to me it looks a lot more stable between runs. All the code is my original code (none of the suggestions you made) but I reduced the learning rate to 0.00001 instead of 0.0001.
Not quite sure what that means exactly tho. Or if more adjustments are needed.
As for the confusion matrix. I think the issue is the difference between smoothed values in TensorBoard vs the actual values. But I just ran it again with the previous values to verify. It does look like it matches up if you look at the actual value instead of the smoothed value.
Got it. Thanks so much for your help!! Still a lot to learn here.
Coming from a world of building software where things are very binary (it works or it doesn’t), it’s also really tough to judge how good is “good enough”. There is a point of diminishing returns, and not sure at what point to say that it’s good enough vs continuing to learn and improve it.
Really appreciate your help here tho.